Refine your search:     
Report No.
 - 

Valence control of charge and orbital frustrated system YbFe$$_{2}$$O$$_{4}$$ with electrochemical Li$$^{+}$$ intercalation

Murase, Satoshi*; Yoshikawa, Yumi*; Fujiwara, Kosuke*; Fukada, Yukimasa*; Teranishi, Takashi*; Kano, Jun*; Fujii, Tatsuo*; Inada, Yasuhiro*; Katayama, Misaki*; Yoshii, Kenji  ; Tsuji, Takuya  ; Matsumura, Daiju   ; Ikeda, Naoshi*

We report a trial of the valence control for mixed valence iron triangular oxide YbFe$$_{2}$$O$$_{4}$$ in order to develop an effective technique to control the frustration of charges in strongly correlated electron systems. The electro-chemical doping of Li$$^{+}$$ into YbFe$$_{2}$$O$$_{4}$$ was examined on the cell type sample similar to the Li-ion secondary battery cell. Systematic change of the lattice constant, Fe-Fe and Fe-Yb distance were observed with Li doping. Maximum value of the doping was over 300 mAh/g. An EXAFS experiment indicated that Li positioned between Yb octahedron layer (U-layer) and Fe-bipyramidal layer (W-layer). However, detailed change of iron valence state of YbFe$$_{2}$$O$$_{4}$$ was not clearly observed because of the superimpose of the signal from iron metal nano particles in XANES observation. The results indicate that the electrochemical method might be one of the potential technique to control the frustration of charges in YbFe$$_{2}$$O$$_{4}$$.

Accesses

:

- Accesses

InCites™

:

Percentile:0

Category:Chemistry, Multidisciplinary

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.