Refine your search�ソスF     
Report No.

Simulation of the self-propagating hydrogen-air premixed flame in a closed-vessel by an open-source CFD code

Thwe Thwe, A.  ; Terada, Atsuhiko  ; Hino, Ryutaro; Nagaishi, Ryuji ; Kadowaki, Satoshi

The simulations of the combustion of self-propagating hydrogen-air premixed flame are performed by an open-source CFD code. The flame propagation behavior, flame radius, temperature and pressure are analyzed by varying the initial laminar flame speed and grid size. When the initial laminar speed increases, the thermal expansion effects become strong which leads the increase of flame radius along with the increase of flame surface area, flame temperature and pressure. A new laminar flame speed model derived previously from the results of experiment is also introduced to the code and the obtained flame radii are compared with those from the experiments. The formation of cellular flame fronts is captured by simulation and the cell separation on the flame surface vividly appears when the gird resolution becomes sufficiently higher. The propagation behavior of cellular flame front and the flame radius obtained from the simulations have the reasonable agreement with the previous experiments.



- Accesses




Category:Nuclear Science & Technology



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.