検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年

Emergence of spin-orbit coupled ferromagnetic surface state derived from Zak phase in a nonmagnetic insulator FeSi

鉄シリコン化合物のZak位相に由来する強磁性表面状態の生成

大塚 悠介*; 金澤 直也*; 平山 元昭*; 松井 彬*; 野本 拓也*; 有田 亮太郎*; 中島 多朗*; 花島 隆泰*; Ukleev, V.*; 青木 裕之  ; 茂木 将孝*; 藤原 宏平*; 塚崎 敦*; 市川 昌和*; 川崎 雅司*; 十倉 好紀*

Otsuka, Yusuke*; Kanazawa, Naoya*; Hirayama, Motoaki*; Matsui, Akira*; Nomoto, Takuya*; Arita, Ryotaro*; Nakajima, Taro*; Hanashima, Takayasu*; Ukleev, V.*; Aoki, Hiroyuki; Mogi, Masataka*; Fujiwara, Kohei*; Tsukazaki, Atsushi*; Ichikawa, Masakazu*; Kawasaki, Masashi*; Tokura, Yoshinori*

FeSi is a nonmagnetic narrow-gap insulator, exhibiting peculiar charge and spin dynamics beyond a simple band structure picture. Those unusual features have been attracting renewed attention from topological aspects. Although the surface conduction was demonstrated according to size-dependent resistivity in bulk crystals, its topological characteristics and consequent electromagnetic responses remain elusive. Here, we demonstrate an inherent surface ferromagnetic-metal state of FeSi thin films and its strong spin-orbit coupling (SOC) properties through multiple characterizations of two-dimensional conductance, magnetization, and spintronic functionality. Terminated covalent bonding orbitals constitute the polar surface state with momentum-dependent spin textures due to Rashba-type spin splitting, as corroborated by unidirectional magnetoresistance measurements and first-principles calculations. As a consequence of the spin-momentum locking, nonequilibrium spin accumulation causes magnetization switching. These surface properties are closely related to the Zak phase of the bulk band topology. Our findings propose another route to explore noble metal-free materials for SOC-based spin manipulation.

Access

:

- Accesses

InCites™

:

パーセンタイル:40.96

分野:Multidisciplinary Sciences

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.