Refine your search:     
Report No.
 - 

Evaluation on laser quenching heat transfer mechanism using numerical method and improvement of quenching depth

Kitagawa, Yoshihiro; Shirahama, Takuma*; Kisohara, Naoyuki ; Tsuboi, Akihiko 

Laser scanning quenching is a locally and rapidly heat-treated process and has an advantage of no coolant required. Compared with conventional technique such as induction quenching, the region of laser quenching is about 0.5$$sim$$0.7mm in depth and it needs to be expanded for more applications or durability. For this purpose, the temperature distributions and transitions in materials during laser irradiation have been revealed by using a 3D heat transfer computer code, micro-structural observation and hardness transitions in depth direction. The results indicate the laser irradiation with low power and low scan speed condition allows deeper quenching area, but it also suggests the hardness of the deepest quenching area is degraded due to slow temperature decreasing rate after laser heat scanning. Multiple times continuous irradiation have been proposed and studied to resolve this hardness degradation, and maximum quenching depth of 1.4mm is obtained under three times irradiation and controlling its power and scan speed properly.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.