Refine your search:     
Report No.
 - 

Evaluation of sample cell materials for aqueous solutions used in quasi-elastic neutron scattering measurements

Tominaga, Taiki*; Sahara, Masae*; Kawakita, Yukinobu  ; Nakagawa, Hiroshi   ; Yamada, Takeshi*

For quasi-elastic neutron scattering (QENS) studies, sample cells made of pure or alloyed aluminum are frequently employed. Although the Al surface is protected by a passivating film, this film is not robust. Therefore, when the sample is an aqueous solution, chemical interactions between the Al surface and sample, promoted by corrosive entities such as chloride ions and certain conditions of pH, can compromise the integrity of the cell and interfere with the experiment. In this study, the corrosion susceptibilities of Al and its alloys were investigated by subjecting them to various treatments; the results were compared with those of other candidate materials with low chemical reactivity. This work showed that alloys with higher Al content and boehmite-coated surfaces are resistant to corrosion. In particular, for Al, the resistance is due to a reduction in the contact area achieved by reducing the surface roughness. QENS measurements of empty sample cells made of these materials revealed two results: (1) the profile of the cell fabricated with a copper-free Al alloy showed a minor dependence on the scattering vector magnitude $$Q$$ and (2) reducing the real surface area of Al effectively suppresses its scattering intensity, while boehmite coating strengthens the scattering. Cells fabricated with Mo, Nb and single-crystal sapphire can be used as alternatives to Al because of their low scattering intensity and reduced dependence on $$Q$$.

Accesses

:

- Accesses

InCites™

:

Percentile:55.82

Category:Chemistry, Multidisciplinary

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.