Refine your search�ソスF     
Report No.
 - 

Tree cutting approach for reducing communication in domain partitioning of tree-based block-structured adaptive mesh refinement

Hasegawa, Yuta   ; Aoki, Takayuki*; Kobayashi, Hiromichi*; Idomura, Yasuhiro   ; Onodera, Naoyuki   

We developed a block-structured static adaptive mesh refinement (AMR) CFD code for the aerodynamics simulation using the lattice Boltzmann method on GPU supercomputers. The data structure of AMR was based on the forest-of-octrees, and the domain partitioning algorithm was based on space-filling curves (SFCs). To reduce the halo data communication, we introduced the tree cutting approach, which divided the global domains with a few octrees into small sub-domains with many octrees, leading to a hierarchical domain partitioning approach with the coarse structured block and the fine SFC partitioning in each block. The tree cutting improved the locality of the sub-divided domain, and reduced both the amount of communication data and the number of connections of the halo communication. In the strong scaling test on the Tesla V100 GPU supercomputer, the tree cutting approach showed $$times$$1.82 speedup at the performance of 2207 MLUPS (mega-lattice update per second) on 128 GPUs.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.