Refine your search�ソスF     
Report No.

CFD analysis on stratification dissolution and breakup of the air-helium gas mixture by natural convection in a large-scale enclosed vessel

Hamdani, A.  ; Abe, Satoshi  ; Ishigaki, Masahiro ; Shibamoto, Yasuteru ; Yonomoto, Taisuke 

This paper describes the computational fluid dynamics (CFD) analysis and validation works from the previous experimental study on the natural convection driven by outer surface cooling in the presence of density stratification consisting of air and helium (as a mimic gas of hydrogen). The experiment was conducted in the Containment InteGral effects Measurement Apparatus (CIGMA) facility at Japan Atomic Energy Agency (JAEA). The numerical simulation was carried out to analyze the detailed effect of the cooling region on the erosion of the helium stratification layer. The temporal and spatial evolution of the helium concentration and the gas temperature inside the containment vessel was predicted and validated against the experimental data. In addition, two stratification behaviors that depend on the cooling location were presented and discussed. The CFD simulation confirmed that an upper head cooling caused two counter-rotating vortexes in the helium-rich zone. Meanwhile, the upper half body cooling caused two counter-rotating vortexes in the helium-poor zone. These findings are important to understand the mechanism of the density stratification process driven by natural convection in the containment vessel.



- Accesses




Category:Nuclear Science & Technology



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.