Refine your search:     
Report No.

Development of tailor-made adsorbents for uranium recovery from seawater on the basis of uranyl coordination chemistry (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Development of Tailor-made Adsorbents for Uranium Recovery from Seawater on the Basis of Uranyl Coordination Chemistry" conducted from FY2019 to FY2021. Since the final year of this proposal was FY2021, the results for three fiscal years were summarized. The present study aims to develop a new ligand class for efficient and selective capture of uranium from seawater. On the basis of deep understanding on uranyl coordination chemistry, we design molecular structures of pentadentate ligands as functional moieties for uranium adsorption from seawater and study fundamental coordination chemistry of uranyl ion with those ligands in order to resolve current problems in uranium recovery technology from seawater and



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.