Challenge to advancement of debris composition and direct isotope measurement by microwave-enhanced LIBS (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project
Collaborative Laboratories for Advanced Decommissioning Science; i-Lab*
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Challenge to advancement of debris composition and direct isotope measurement by microwave-enhanced LIBS" conducted in FY2021. The present study aims to increase the emission intensity of LIBS (laser-induced breakdown spectroscopy) by superimposing MW (microwave) and apply it to uranium isotope measurement. In FY2021, after confirming that there was no problem in terms of specifications including noise leakage by downsizing the semiconductor MW oscillator and evaluating it as a single unit, the possibility of uranium isotope measurement was examined by applying it to the LIBS experiment. In addition, the optimized design of the MW antenna was carried out. By applying them, we confirmed the actual performance, …