Refine your search�ソスF     
Report No.
 - 

Neutron diffraction study of hydrogen site occupancy in Fe$$_{0.95}$$Si$$_{0.05}$$ at 14.7 GPa and 800 K

Mori, Yuichiro*; Kagi, Hiroyuki*; Kakizawa, Sho*; Komatsu, Kazuki*; Shito, Chikara*; Iizuka, Riko*; Aoki, Katsutoshi*; Hattori, Takanori   ; Sano, Asami   ; Funakoshi, Kenichi*; Saito, Hiroyuki*

The Earth's core is believed to contain some light elements because it is 10% less dense than pure Fe under the corresponding pressure and temperature conditions. Hydrogen, a promising candidate among light elements, has phase relations and physical properties that have been investigated mainly for the Fe-H system. This study specifically examined an Fe-Si-H system using in-situ neutron diffraction experiments to investigate the site occupancy of deuterium of hcp-Fez$$_{0.95}$$Si$$_{0.05}$$ hydride at 14.7 GPa and 800 K. Results of Rietveld refinement indicate hcp-Fe$$_{0.95}$$Si$$_{0.05}$$ hydride as having deuterium (D) occupancy of 0.24(2) exclusively at the interstitial octahedral site in the hcp lattice. The effect on the site occupancy of D by addition of 2.6 wt% Si into Fe (Fe$$_{0.95}$$Si$$_{0.05}$$) was negligible compared to results obtained from an earlier study of an Fe-D system (Machida et al., 2019).

Accesses

:

- Accesses

InCites™

:

Percentile:0.02

Category:Mineralogy

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.