Horonobe Underground Research Laboratory Project; Investigation program for the 2022 fiscal year
Nakayama, Masashi
The Horonobe Underground Research Laboratory (URL) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies for geological disposal of High-level Radioactive Waste through investigations of the deep geological environment within the host sedimentary rock at Horonobe Town in Hokkaido, north Japan. In fiscal year 2022, we continue to conduct research on "Study on near-field system performance in geological environment", "Demonstration of repository design options", and "Understanding of buffering behaviour of sedimentary rocks to natural perturbations", which are the important issues shown in the Horonobe underground research plan from fiscal year 2020. The main studies to be conducted in fiscal year 2022 are as follows. As "Study on near-field system performance in geological environment", we will continue to the test under the simulated condition in which the heat generation by the high-level radioactive waste has subsides in the full-scale engineered barrier system (EBS) performance experiment. We will also conduct solute transport experiment with model testing that take into account the effects of organic matter, microbes, and colloids, and initiate borehole investigation to evaluate solute transport experiments on fractures distribute in Koetoi formation. As "Demonstration of repository design concept", we will continue experiment and analysis of concrete deterioration in the underground environment as a demonstration of remote technique for emplacement and retrievable. As a demonstration of the closure techniques, laboratory tests will be continued to investigate the mechanism of bentonite runoff behaviour, which could be a factor in changing the performance of backfill material, and to expand data on swelling and deformation behaviour. In addition, in-situ borehole closure tests will be conducted to evaluate the applicability of the closure method. As "Understanding of buffering behaviour of