Refine your search:     
Report No.

Fatigue crack non-propagation behavior of a gradient steel structure from induction hardened railway axles

Zhang, H.*; Wu, S. C.*; Ao, N.*; Zhang, J. W.*; Li, H.*; Zhou, L.*; Xu, P. G.   ; Su, Y. H.  

Abnormal damages in railway axles can lead to a significant hazard to running safety and reliability. To this end, a surface treatment was selected to effectively inhibit fatigue crack initiation and growth. In this study, a single edge notch bending fatigue test campaign with artificial notches was conducted to elucidate the fatigue crack non-propagation behavior in railway S38C axles subjected to an induction hardening process. The fatigue cracking behavior in the gradient structure was revealed by optical microscopy, electron backscatter diffraction, and fractography. The microhardness distribution was measured using a Vickers tester. The obtained results show that the microhardness of the strengthening layer is nearly triple that of the matrix. Owing to the gradient microstructures and hardness, as well as compressive residual stress, the fatigue long crack propagates faster once it passes through the hardened zone (approximately 2.0 mm in the radial depth). Thereafter, local retarding (including deflection, branching, and blunting) of the long crack occurs because of the relatively coarse ferrite and pearlite in the transition region and matrix. Totally, this fatigue cracking resistance is reasonably believed to be due to the gradient microstructure and residual stress. These findings help to tailor a suitable detection strategy for maximum defects or cracks in railway axles.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.