Refine your search:     
Report No.

Evaluation on activation activity of radioactive materials remaining in JMTR Reactor Facility

Nagata, Hiroshi ; Otsuka, Kaoru ; Omori, Takazumi ; Ide, Hiroshi  

Japan Materials Testing Reactor (JMTR) was decided as a one of decommission facilities in April 2017. The activation activity of radioactive materials remaining in the reactor facility was evaluated in order to submit the decommissioning plan to the Nuclear Regulation Authority. Total activation activity was 9.3$$times$$10$$^{18}$$ Bq after the permanent shutdown of reactor, 2.7$$times$$10$$^{16}$$ Bq after 21 years, 1.0$$times$$10$$^{16}$$ Bq after 40 years and 2.4$$times$$10$$^{15}$$ Bq after 100 years. The structure with high activation activity was the core structural materials in JMTR such as beryllium frame, aluminum reflector, etc., and the material was stainless steel, beryllium, etc. The ratio of nuclides to the total amount of activated radioactivity was highest in H-3 until about 40 years after the reactor shutdown, and then in Ni-63. For reference, the radioactivity level was classified based on the results of the obtained radioactivity concentration. The ratio of the weight of each radioactivity level to the total weight was 0.3-0.4% (10-13t) for L1, 0.0-0.4% (0-14t) for L2, 1.0-1.2% (32-39t) for L3 and 98.0-98.7% (about 3200t) for CL until 100 years after the reactor shutdown. It was found that those classified as CL account for more than 90% of the total. When treating and disposing of radioactive waste, evaluation will be carried out based on appropriate methods, including evaluation results of secondary pollutants.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.