Depth profile analysis of multi-layer laminated thin film interface by spatiotemporal angle-resolved APXPS method
Toyoda, Satoshi*; Yoshimura, Masashi*; Sumida, Hirosuke*; Mineoi, Susumu*; Machida, Masatake*; Yoshigoe, Akitaka ; Yoshikawa, Akira*; Suzuki, Satoru*; Yokoyama, Kazushi*
The present status of spatiotemporal depth profiling analysis of the multilayer stacked film interface based on Ambient Pressure X-ray Photoelectron Spectroscopy (APXPS) is presented. To begin with, depth profiles of the multilayer stacked film interfaces have been achieved by time-division Near Ambient Pressure Hard X-ray Angle-Resolved PhotoEmission Spectroscopy data. We then have promoted our methods to quickly perform peak fittings and depth profiling from time-division angle resolved AP-XPS data including spatial resolution, which enables us to realize spatiotemporal depth profiles of the interfaces under reaction conditions such as oxidation and reduction. In addition, it is found that the traditional maximum entropy method (MEM) combined with Jackknife averaging of sparse modeling is effective to perform dynamic measurement of depth profiles with high precision.