Refine your search:     
Report No.
 - 

Atmospheric ammonia deposition and its role in a cool-temperate fragmented deciduous broad-leaved forest

Katata, Genki*; Yamaguchi, Takashi*; Watanabe, Makoto*; Fukushima, Keitaro*; Nakayama, Masataka*; Nagano, Hirohiko*; Koarashi, Jun   ; Tateno, Ryunosuke*; Kubota, Tomohiro 

Moderately elevated reactive nitrogen (Nr) deposition due to anthropogenic activities can have an impact on forest production via throughfall and canopy retention processes. Forest fragmentation can increase dry deposition of atmospheric ammonia volatilized from agricultural areas, and consequently increase spatial variability of Nr deposition even within the same forest (edge effect). However, little is known about the edge effect and its impact on forest production in a deciduous broad-leaved forest in Asian countries. Here, we performed the field observations of atmospheric concentration and deposition of inorganic Nr gases and particles in a Japanese fragmented forest from May 2018 to April 2019. The results demonstrated that annual dry deposition of ammonia was dominant in the annual total dissolved inorganic Nr deposition at the forest edge, including the edge effect. Additionally, agricultural activities such as fertilization in the area surrounding the forest likely enhanced the potential of canopy retention of NH$$_{4}$$$$^{+}$$, known as Nr species readily absorbed by tree canopy.

Accesses

:

- Accesses

InCites™

:

Percentile:58.15

Category:Environmental Sciences

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.