Refine your search:     
Report No.
 - 

Optimization and inference of bin widths for histogramming inelastic neutron scattering spectra

Tatsumi, Kazuyoshi  ; Inamura, Yasuhiro  ; Kofu, Maiko   ; Kiyanagi, Ryoji  ; Shimazaki, Hideaki*

A data-driven bin-width optimization for the histograms of measured data sets based on inhomogeneous Poisson processes was developed in a neurophysiology study [Shimazaki & Shinomoto (2007). Neural Comput. 19, 1503-1527], and a successive study [Muto et al. (2019). J. Phys. Soc. Jpn, 88, 044002] proposed its application to inelastic neutron scattering (INS) data. In the present study, the results of the method on experimental INS time-of-flight data collected under different measurement conditions from a copper single crystal are validated. The extrapolation of the statistics on a given data set to other data sets with different total counts precisely infers the optimal bin widths on the latter. The histograms with the optimized bin widths statistically verify two fine-spectral feature examples in the energy and momentum transfer cross sections: (i) the existence of the phonon band gaps; and (ii) the number of plural phonon branches located close to each other. This indicates that the applied method helps in the efficient and rigorous observation of spectral structures important in physics and materials science like novel forms of magnetic excitation and phonon states correlated to lattice thermal conductivities.

Accesses

:

- Accesses

InCites™

:

Percentile:0.01

Category:Chemistry, Multidisciplinary

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.