Refine your search:     
Report No.
 - 

Vibration test and fatigue test for failure probability evaluation method with integrated energy

Kinoshita, Takahiro*; Okamura, Shigeki*; Nishino, Hiroyuki  ; Yamano, Hidemasa   ; Kurisaka, Kenichi ; Futagami, Satoshi  ; Fukasawa, Tsuyoshi*

The seismic evaluation of key components such as reactor vessel is important for the Seismic Probabilistic Risk Assessment (S-PRA) in a Sodium-Cooled Fast Reactor (SFR). Many components were damaged by cumulative damage like fatigue damage during seismic ground motion. However, general evaluation method for key components under seismic ground motion has been based on static loads and elastic region of materials. More accurate evaluation method for S-PRA, which can evaluate the failure of key components such as reactor vessels, has been actually required. In this study, failure probability evaluation method with integrated energy was developed by comparing the energy with vibration tests and fatigue tests. Vibration tests were performed to evaluate integrated vibration energy at failure by energy balance equation and fatigue tests were performed to evaluate integrated vibration energy at failure based on experimental results of fatigue tests.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.