Refine your search:     
Report No.
 - 

Absolute quantification of $$^{137}$$Cs activity in spent nuclear fuel with calculated detector response function

Sato, Shunsuke*; Nauchi, Yasushi*; Hayakawa, Takehito*; Kimura, Yasuhiko; Kashima, Takao*; Futakami, Kazuhiro*; Suyama, Kenya

A new non-destructive method for evaluating $$^{137}$$Cs activity in spent nuclear fuels was proposed and experimentally demonstrated for physical measurements in burnup credit implementation. $$^{137}$$Cs activities were quantified using gamma ray measurements and numerical detector response simulations without reference fuels, in which $$^{137}$$Cs activities are well known. Fuel samples were obtained from a lead use assembly (LUA) irradiated in a commercial pressurized water reactor (PWR) up to 53 GWd/t. Gamma rays emitted from the samples were measured using a bismuth germinate (BGO) scintillation detector through a collimator attached to a hot cell. The detection efficiency of gamma rays with the detector was calculated using the PHITS particle transport calculation code considering the measurement geometry. The relative activities of $$^{134}$$Cs, $$^{137}$$Cs, and $$^{154}$$Eu in the sample were measured with a high-purity germanium (HPGe) detector for more accurate simulations of the detector response for the samples. The absolute efficiency of the detector was calibrated by measuring a standard gamma ray source in another geometry. $$^{137}$$Cs activity in the fuel samples was quantified using the measured count rate and detection efficiency. The quantified $$^{137}$$Cs activities agreed well with those estimated using the MVP-BURN depletion calculation code.

Accesses

:

- Accesses

InCites™

:

Percentile:0.01

Category:Nuclear Science & Technology

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.