Refine your search:     
Report No.

Implementation of the electron track-structure mode for silicon into PHITS for investigating the radiation effects in semiconductor devices

Hirata, Yuho   ; Kai, Takeshi   ; Ogawa, Tatsuhiko   ; Matsuya, Yusuke  ; Sato, Tatsuhiko   

Some radiation effects such as pulse-height defects and soft errors can cause problems in silicon (Si) devices. Local energy deposition in microscopic scales is essential information to elucidate the mechanism of these radiation effects. We, therefore, developed an electron track-structure model, which can simulate local energy deposition down to nano-scales, dedicated to Si and implemented it into PHITS. Then, we verified the accuracy of our developed model by comparing the ranges and depth-dose distributions of electrons obtained from this study with the corresponding experimental values and other simulated results. As an application of the model, we calculated the mean energies required to create an electron-hole pair, the so-called epsilon value. We found that the threshold energy for generating secondary electrons reproducing the epsilon value is 2.75 eV, consistent with the corresponding data deduced from past theoretical and computational studies. Since the magnitudes of the radiation effects on Si devices largely depend on the epsilon value, the developed code is expected to contribute to precisely understanding the mechanisms of pulse-height defects and semiconductor soft errors.



- Accesses




Category:Physics, Applied



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.