Refine your search:     
Report No.
 - 

Non-proliferation features in partitioning and transmutation cycle using accelerator-driven system, 3; Safeguards by design by using ${it Material Attractiveness}$ evaluation for TRU fuel cycle

Oizumi, Akito   ; Sagara, Hiroshi*

Research and development of partitioning and transmutation cycle with accelerator drive systems (ADSs) transmuting minor actinides separated from the commercial cycles has been continuously conducted to reduce the high-level radioactive waste contained in spent fuel discharged from nuclear power plants. Since the chemical form and composition of the fuels are different from those of the current commercial cycles, it is necessary to examine the inspection goal of the safeguards and the design level of physical protections which are required for the partitioning and transmutation (P&T) cycle. In previous studies, the ${it Material Attractiveness}$ (${it Attractiveness}$) of the uranium (U) in the ADS fuel with a unique isotopic composition was evaluated as 2, the second highest on a 4-point scale, assuming state actors. In this study, reduction methods of potential nuclear proliferation were examined for the rationalization of the P&T cycle design considering nuclear non-proliferation. The amount of recovered U (RepU) added to the ADS fuel, which was required to increase the bare critical mass of U, was quantitatively evaluated as one of the reduction methods of potential nuclear proliferation risk. As a result, the addition of RepU, which was about 1.3- 2.7 times U in the ADS fuel, lowered the ${it Attractiveness}$ to 3 - 4. The rationalization of the P&T cycle design based on the safeguards by design can be expected by reviewing the U decontamination standards in the reprocessing steps of the commercial cycle based on these quantitative data.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.