Refine your search�ソスF     
Report No.

The Experimental and simulation results of LIVE-J2 test; Investigation on heat transfer in a solid-liquid mixture pool

Madokoro, Hiroshi  ; Yamashita, Takuya  ; Gaus-Liu, X.*; Cron, T.*; Fluhrer, B.*; Sato, Ikken ; Mizokami, Shinya*

Since the reactor pressure vessel (RPV) lower head failure determines the subsequent ex-vessel accident progression, it is a key issue to understand the accident progression of Fukushima Daiichi Nuclear Power Station (1F). The RPV failure is largely affected by thermal loads on the vessel wall and thus it is inevitable to understand thermal behavior of molten metallic pool with co- existence of solid oxide fuel debris. In the past decades, numerous experiments have been conducted to investigate a homogeneous molten pool behavior. Few experiments, however, addresses the melting and heat transfer process of debris bed consisted of materials with different melting temperatures. LIVE-J2 experiment aimed to provide the experimental data on a solid-liquid mixture pool in a simulated RPV lower head under various conditions. The extensive measurements of the melt temperature indicate the heat transfer regimes in a solid-liquid mixture pool. The test results showed that the conductive heat transfer was dominant during the steady state along the vessel wall boundary and that convective heat transfer takes place inside the mixture pool. Besides the experimental performance, the test case was numerically simulated by using ANSYS Fluent. The simulation results generally agree with the measured experimental data. The flow regime and transient melt evolution were able to be estimated by the calculated velocity field and the crust thickness, respectively.



- Accesses




Category:Nuclear Science & Technology



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.