Refine your search:     
Report No.
 - 

Development of a formulation to predict molten core spreading in an LWR severe accident

Sahboun, N. F.  ; Matsumoto, Toshinori ; Iwasawa, Yuzuru  ; Wang, Z. ; Sugiyama, Tomoyuki 

Relocated corium into the Primary Containment Vessel needs to be properly cooled to avoid or mitigate molten core concrete interactions in the PCV in order to maintain its supporting capability for the reactor pressure vessel and to suppress combustible or non-condensable gas releases. To know how effective the cooling is, it became important to know the geometry of the relocated corium. The present study chooses to focus on the "Wet Cavity" strategy and to build a reliable tool to evaluate the corium coolability in such a case. To achieve this goal, a previously developed formulation built to predict the corium geometry under the "Dry Cavity" strategy was extended to the conditions used in the "Wet Cavity" strategy. This extension includes the effect of solidification and cooling from the water by using a newly developed expression for the dimensionless thickness s, the water subcooling, and the melts super heat. After the validation of the extended formulation was confirmed, potential restrictions and limitations were investigated.

Accesses

:

- Accesses

InCites™

:

Percentile:0.01

Category:Nuclear Science & Technology

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.