Refine your search:     
Report No.

Hydrogen vibration excitations of ZrH$$_{1.8}$$ and TiH$$_{1.84}$$ up to 21 GPa by incoherent inelastic neutron scattering

Hattori, Takanori   ; Nakamura, Mitsutaka   ; Iida, Kazuki*; Machida, Akihiko*; Sano, Asami   ; Machida, Shinichi*; Arima, Hiroshi*; Oshita, Hidetoshi*; Honda, Takashi*; Ikeda, Kazutaka*; Otomo, Toshiya*

Hydrogen vibration excitations of fluorite-type ZrH$$_{1.8}$$ and TiH$$_{1.84}$$ were investigated up to 21 GPa and 4 GPa, respectively, by incoherent inelastic neutron scattering experiments. The first excitation energies increased with pressure, as described by the equations $$E_1$$(meV) = 141.4(2) + 1.02(2)$$P$$(GPa) and $$E_1$$(meV) = 149.4(1) + 1.21(8)$$P$$(GPa) for ZrH$$_{1.8}$$ and TiH$$_{1.84}$$, respectively. Coupling with pressure dependence of lattice parameters, the relations between metal-hydrogen distance ($$d_{M-H}$$) and $$E_1$$ are found to be well described by the equations $$E_1$$(meV) = 1.62(9)$$times$$ 10$$^3$$ $$d_{M-H}^{-3.31(8)}$$($AA) and $E_1$$(meV) = 1.47(21)$$times$$ 10$$^3$$ $$d_{M-H}^{-3.5(2)}$$(AA), respectively. The slopes of these curves are much steep compared to the previously reported trend in various fluorite-type metal hydrides at ambient pressure. The hydrogen wave function spreading showed that the local potential field for a hydrogen atom shrinks more intensively than the tetrahedral site. These behavior is likely caused by the rigid metal ion core and the resulting confinement of the hydrogen atom in the narrower potential field at high pressures.



- Accesses




Category:Materials Science, Multidisciplinary



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.