Refine your search:     
Report No.
 - 

Doppler-free ablation fluorescence spectroscopy of Ca for high-resolution remote isotopic analysis

Miyabe, Masabumi   ; Kato, Masaaki*; Hasegawa, Shuichi*

To develop remote isotopic analysis for the nuclids with small isotope shifts, Doppler-free fluorescence spectroscopy of Ca was performed using laser ablation plume. Counter-propagating laser beams from two external cavity diode lasers were used to irradiate the plume in order to excite the ground-state Ca atoms to the $$^{1}$$D$$_{2}$$ state through a double resonance scheme of $$^{1}$$S$$_{0}$$ $$rightarrow$$ $$^{1}$$P$$_{1}$$ $$rightarrow$$ $$^{1}$$D$$_{2}$$. Subsequently, we measured fluorescence spectra associated with the relaxation from the $$^{1}$$D$$_{2}$$ to $$^{1}$$P$$_{1}$$ states. The linewidth measured at 1 ms delay after ablation under helium gas pressure of 70 Pa was found to be less than 70 MHz, which was about 1/30 of the linewidth of the Doppler-limited fluorescence spectrum. A broad Gaussian pedestal was observed at less than 600 micro-second delay in the temporal variation in fluorescence spectra, and it was most likely due to the velocity-changing collision. Additionally, the pressure broadening rate coefficient for the second-step $$^{1}$$P$$_{1}$$$$rightarrow$$ $$^{1}$$D$$_{2}$$ transition was determined to be 46.0 MHz/torr from the spectra measured under various gas pressures. We evaluated analytical performances such as linearity of the calibration curve, limit of detection, and measurement accuracy using fluorescence signals of three naturally occurring Ca isotopes (i.e., $$^{40}$$Ca, $$^{42}$$Ca, and $$^{44}$$Ca). The limit of detection of isotopic abundance was estimated to be 0.09% from the 3-sigma criteria of the background. These results suggest that this spectroscopic technique is promising for remote isotopic analysis of nuclides with small isotope shifts.

Accesses

:

- Accesses

InCites™

:

Percentile:0.02

Category:Chemistry, Analytical

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.