Refine your search:     
Report No.
 - 

Structure and magnetic properties of Fe nanoparticles in amorphous silica implanted with Fe ions and effect of subsequent energetic heavy ion irradiation

Iwase, Akihiro*; Fukuda, Kengo*; Saito, Yuichi*; Okamoto, Yoshihiro  ; Semboshi, Satoshi*; Amekura, Hiroshi*; Matsui, Toshiyuki*

Amorphous SiO$$_{2}$$ samples were implanted with 380 keV Fe ions at room temperature. After implantation, some of the samples were irradiated with 16 MeV Au ions. magnetic properties were investigated using a SQUID magnetometer, and the morphology of the Fe-implanted SiO$$_{2}$$ samples was examined using transmission electron microscopy and X-ray absorption spectroscopy (EXAFS and XANES), which showed that the size of Fe nanoparticles was increasing The size of Fe nanoparticles increased with increasing Fe implantation amount; some of the Fe nanoparticles consisted of Fe oxides, and the valence and structure of Fe atoms became closer to that of metallic $$alpha$$-Fe with increasing Fe injection amount. The magnetization-field curve of the sample implanted with a small amount of Fe was reproduced by Langevin's equation, suggesting that the Fe nanoparticles behave in a superparamagnetic manner. In addition, when a large amount of Fe was implanted, the magnetization-magnetic field curve shows a ferromagnetic state. These magnetic property results are consistent with the X-ray absorption results. Subsequent 16 MeV Au irradiation crushed the Fe nanoparticles, resulting in a decrease in magnetization.

Accesses

:

- Accesses

InCites™

:

Percentile:0

Category:Physics, Applied

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.