検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年

Molecular dynamics analysis of reactor graphite for preparing thermal neutron scattering law

熱中性子散乱則整備に向けた原子炉黒鉛の分子動力学解析

沖田 将一朗  ; 後藤 実  

Okita, Shoichiro; Goto, Minoru

The recently released JENDL-5 and ENDF/B-VIII.0 have adopted porosity-dependent thermal neutron scattering law (TSL) data for reactor graphite, and they improve neutronic calculation accuracy of criticality for graphite-moderated cores. Currently, we can only handle neutronic calculations for three graphite porosities of 0%, 10%, and 30%. The uncertainties associated with the difference between the porosity of actual reactor graphite ($$sim$$20%) and the porosity remains. Toward the future update of JENDL-5, we are planning to preparing new TSL data of reactor graphite. As a first step, it is essential to evalute phonon density state distribution of reactor graphite. In this study, in order to evalute it, molecular dynamic (MD) analysis is performed for three MD models: ideal crystalline graphite (Ideal model), 20%-porous reactor graphite with monoatomic random pore (Monoatomic random model), and 20%-porous reactor graphite with atomic cluster random pore (Cluster random model). The ideal crystalline graphite is modeled without any pores for reference. The 20%-porous reactor graphite with monoatomic random pore is modeled by randomly removing atoms from the ideal crystalline graphite. The 20%-porous reactor graphite with cluster random pore is modeled by randomly removing atomic clusters of approximately 2 nm in diameter from the ideal crystalline graphite. Their interatomic interactions are on the basis of Reactive Empirical Bond Order (REBO) potential. Velocity autocorrelation functions and phonon density of states distributions are calculated for these models. For validation, specific heat for each model is evaluated, and they are compred with experimental values.

Access

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.