Nested antiferromagnetic spin fluctuations and non-Fermi-liquid behavior in electron-doped CeCoNiIn
Sakai, Hironori ; Tokunaga, Yo ; Kambe, Shinsaku ; Zhu, J.-X.*; Ronning, F.*; Thompson, J. D.*; Kotegawa, Hisashi*; To, Hideki*; Suzuki, Kohei*; Oshima, Yoshiki*; Yokoyama, Makoto*
We investigate the electronic state of Ni-substituted CeCoNiIn by nuclear quadrupole and magnetic resonance (NQR/NMR) techniques. The heavy fermion superconductivity below K for is suppressed by Ni substitutions, and reaches zero for . The In NQR spectra for and 0.25 can be explained by simulating the electrical field gradient that is calculated for a virtual supercell with density functional theory. The spin-lattice relaxation rate indicates that Ni substitution weakens antiferromagnetic correlations that are not localized near the substituent but instead are uniform in space. The temperature () dependence of for shows a maximum around K and decreases toward almost zero when temperature is further reduced as if a gap might be opening in the magnetic excitation spectrum; however, the magnetic specific heat and the static magnetic susceptibility evolve smoothly through with a dependence. The peculiar T dependence of and non-Fermi-liquid specific heat and susceptibility can be interpreted in a unified way by assuming nested antiferromagnetic spin fluctuations in a quasi-two-dimensional electronic system.