Refine your search:     
Report No.
 - 

Insight on the mechanical properties of hierarchical porous calcium-silicate-hydrate pastes according to the Ca/Si molar ratio using ${it in situ}$ synchrotron X-ray scattering and nanoindentation test

Im, S.*; Jee, H.*; Suh, H.*; Kanematsu, Manabu*; Morooka, Satoshi  ; Choe, H.*; Nishio, Yuhei*; Machida, Akihiko*; Kim, J.*; Lim, S.*; Bae, S.*

Nanocrystalline calcium-silicate-hydrate (C-S-H) is a typical heterogeneous material with a multiscale structure spanning a wide length scale from angstrom to micrometer, and whose structure is determined by the Ca/Si ratio. In this study, we directly applied compressive loads on synthetic C-S-H pastes with Ca/Si ratios of 0.6-1.2 and investigated their mechanical properties using the elastic modulus calculated at three length scale levels (i.e., angstrom to nanometer, micrometer, and millimeter) via in-situ synchrotron X-ray scattering, nanoindentation tests, and strain gauges, respectively. Further, $$^{29}$$Si nuclear magnetic resonance spectroscopy was conducted on the C-S-H pastes to elucidate the alterations in the silicate polymerization. The experimental results confirmed the deformation behavior of the C-S-H paste with different Ca/Si ratios under external loading, which was demonstrated to be transferred from the surface of the pastes to particles owing to the presence of multiscale pores.

Accesses

:

- Accesses

InCites™

:

Percentile:70.19

Category:Construction & Building Technology

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.