Refine your search�ソスF     
Report No.

Insights into machine-learning modeling for Cr(VI) removal from contaminated water using nano-nickel hydroxide

Maamoun, I.; Rushdi, M.*; Falyouna, O.*; Eljamal, R.*; Eljamal, O.*

The aim of this study is to employ machine learning (ML) in providing high-accuracy prediction of Cr(VI) removal efficiency by nickel hydroxide ($$n$$-Ni(OH)$$_{2}$$) unconventional sorbent, towards the new era of artificial intelligence (AI) applications in (waste) water treatment. Hence, a reliable ML modeling was conducted based on the experimental investigation, considering different reaction parameters, including $$n$$-Ni(OH)$$_{2}$$ dosage, initial pH, reaction temperature, and initial Cr(VI) concentration. Linear regression model was selected as the suitable regression model with respect to the obtained reasonable correlation and the less training time and evaluation time, comparing to other considered regression techniques. The adopted linear regression model, for the time corresponding Cr(VI) removal efficiencies, exhibited satisfactory prediction accuracy. Furthermore, the importance of models coefficients was determined and implied the high importance of the dosage feature. The contributive effect of the investigated features was mainly concentrated at the early stage of the reaction (5 to 10 min), with an average range of 50 to 80 %, which was in agreement with the experimental findings of the rapid and full removal of Cr(VI) by $$n$$-Ni(OH)$$_{2}$$. The elucidated insights into the effects of different factors that influence Cr(VI) removal process by $$n$$-Ni(OH)$$_{2}$$ revealed the underlying interactions and removal pathways, which shall benefit other researchers in the preliminary design of pilot-scale applications and anticipating the predicted performance.



- Accesses




Category:Engineering, Chemical



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.