Refine your search:     
Report No.
 - 

Magnetization process of cubic Fe$$_3$$O$$_4$$ submicron particles studied by polarized small-angle neutron scattering

Nomura, Eiji*; Chiba, Momoko*; Matsuo, Sakoto*; Noda, Chiaki*; Kobayashi, Satoru*; Manjanna, J.*; Kawamura, Yukihiko*; Oishi, Kazuki*; Hiroi, Kosuke  ; Suzuki, Junichi*

We report results of polarized small-angle neutron scattering (SANS) experiments at T = 10 K and 300 K for cubic Fe$$_3$$O$$_4$$ submicron- sized particles, where formation of a complex spin vortex is expected. Magnetic SANS intensities of magnetization components in the direction perpendicular and parallel to the magnetic field were observed to change significantly at around the coercivity. Magnetization components parallel to the field minimizes around the coercivity both at T = 10 K and 300 K, whereas those perpendicular to the magnetic field maximizes near the coercivity and the maximum value differ greatly, depending on the temperature. Based on results of micromagnetic simulations, the observed SANS intensities were interpreted as due to magnetic structural changes from a flower to a spin vortex state and gradual tilting of a vortex core from the external field to magnetocrystalline anisotropy axes at low fields.

Accesses

:

- Accesses

InCites™

:

Percentile:34.67

Category:Nanoscience & Nanotechnology

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.