Refine your search:     
Report No.
 - 

Spontaneous formations of nanoconfined water in ionic liquids by small-angle neutron scattering

Abe, Hiroshi*; Nemoto, Fumiya*; Hiroi, Kosuke  ; Oishi, Kazuki*; Takata, Shinichi  

In this study, monodispersive nanoconfined water ("water pocket") is organized spontaneously in hydrophilic ionic liquid (IL). The IL is 1-alkyl-3-methylimidazolium nitrate ([C$$_{n}$$mim][NO$$_{3}$$] $$n$$ = 2, 6, and 8). By small-angle neutron scattering (SANS), D$$_{2}$$O aggregations in the IL are detected. There are no SANS peaks for [C$$_{2}$$mim][NO$$_{3}$$]-D$$_{2}$$O, but, in [C$$_{6}$$mim][NO$$_{3}$$]-$$x$$ mol% D$$_{2}$$O, a SANS peak can be observed at $$70 < x < 90$$ mol%. The peak intensity, position, and profile change according to water concentration and temperature. Pure [C$$_{8}$$mim][NO$$_{3}$$] has a distinct SANS peak, reflecting on the nanodomains at room temperature. Above 70 mol%, the SANS peak of [C$$_{8}$$mim][NO$$_{3}$$]-D$$_{2}$$O sharply increases and shifts to the low-Q position. The water pocket develops proportionate to water concentration, and its morphologies are visualized using an ${it ab initio}$ bead model. The alkyl chain length dependence of the water pocket is clarified by a three-dimensional reconstruction method.

Accesses

:

- Accesses

InCites™

:

Percentile:61.27

Category:Chemistry, Physical

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.