Neutron capture cross-section measurements with TC-Pn in KUR for some nuclides targeted for decommissioning
Nakamura, Shoji ; Endo, Shunsuke ; Kimura, Atsushi ; Shibahara, Yuji*
The present study is concerned with the neutron capture cross-sections that contribute to the evaluation of the amount of radionuclides possessing problems in decommissioning. In this study, Sc, Cu, Zn, Ag, In and W were selected among the objective nuclides, and their thermal-neutron capture cross-sections were measured using TC-Pn equipment of the KUR of the Institute for Integrated Radiation and Nuclear Science, Kyoto University. High purity metal samples were prepared. A gold-aluminum ally wire, cobalt and molybdenum foils were used to monitor the neutron flux at the irradiation position of TC-Pn. The flux monitors and metal samples were irradiated for 1 hour at 1-MW operation of the KUR. After irradiation, the irradiation capsule was opened, samples and flux monitors were enclosed in a vinyl bag one by one, and then rays emitted from the samples and monitors were measured with a high-purity Ge detector. The thermal-neutron flux component was derived with the reaction rates of flux monitors (Au, Co and Mo) on the basis of Westcott's convention, and found to be (5.920.10)10 n/cm/sec at the irradiation position. The measured reaction rate for each metal sample divided by the evaluated thermal-neutron capture cross-section should give the same value of the thermal-neutron flux component if the cross section is suitable. This time, we found that the cross sections of Sc and Zn were consistent with the evaluated one, but those of other nuclides were inconsistent with their evaluated ones; that is, it turned out that their thermal-neutron capture cross-sections should be modified.