Refine your search:     
Report No.
 - 

Dominant Andreev reflection through nonlinear radio-frequency transport

Zhang, T.*; Tajima, Hiroyuki*; Sekino, Yuta*; Uchino, Shun   ; Liang, H.*

We theoretically propose the laser-induced Andreev reflection between two-component Fermi superfluid and normal states via spatially-uniform Rabi couplings. By analyzing the tunneling current between the superfluid and normal states up to the fourth order in the Rabi couplings, we find that the Andreev current exhibits unconventional non-Ohmic transport at zero temperature. Remarkably, the Andreev current gives the only contribution in the synthetic junction system at zero detunings regardless of the ratio of the chemical potential bias to the superfluid gap, which is in sharp contrast to that in the conventional superconductor-normal metal junction. Our result may also pave a way for understanding the black hole information paradox through the Andreev reflection as a quantum-information mirror.

Accesses

:

- Accesses

InCites™

:

Percentile:0

Category:Physics, Multidisciplinary

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.