Refine your search:     
Report No.
 - 

Defect formation simulated by track structure calculation model

Ogawa, Tatsuhiko   ; Iwamoto, Yosuke   

Atomic defect is one of the critical factors that determines the irradiation effects in materials. The atoms are recoiled by the impulse of incoming radiation, which changes the mechanical, electrical and chemical properties of the target materials. Methods to calculate atomic displacement based on nuclear reaction cross sections and Rutherford scattering cross sections were proposed but they were dedicated to calculation of the defect density in macroscopic scale whereas some phenomena are attributed to the topological arrangements of defects in microscopic scale. Application of a track-structure calculation model, ITSART implemented to a general-purpose radiation transport code PHITS for calculation of the topological arrangement of radiation-induced defects is proposed in this study. To verify the defect production calculated by ITSART, DPA (Displacement Per Atom) cross section in Cu was calculated and compared with literature data. The agreement indicates the accuracy of ITSART for calculating atomic displacement. By using the same methodology to a smaller volume, the defects in SiO$$_{2}$$ exposed to 600 MeV proton beam was calculated. PHITS users can make use of the outputs by forwarding them to other tools, such as molecular dynamics codes, to analyse the further evolution of the defects.

Accesses

:

- Accesses

InCites™

:

Percentile:0.00

Category:Instruments & Instrumentation

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.