Refine your search:     
Report No.
 - 

Long and oriented graphene nanoribbon synthesis from well-ordered 10,10'-dibromo-9,9'-bianthracene monolayer on crystalline Au surfaces

Yano, Masahiro   ; Yasuda, Satoshi   ; Fukutani, Katsuyuki; Asaoka, Hidehito  

Bottom-up synthesis on metal surfaces has attracted attention for the fabrication of graphene nanoribbons (GNRs) with atomically-precise chemical structures to realize novel electronic devices. However, control of length and orientation on surfaces during GNR synthesis is difficult, thus, achieving longer and aligned GNR growth is a significant challenge. Herein, we report GNR synthesis from a well-ordered dense monolayer on Au crystalline surfaces for long and oriented GNR growth. Scanning tunneling microscopy showed that 10,10'-dibromo-9,9'-bianthracene (DBBA) precursors deposited on Au(111) at room temperature self-assembled into a well-ordered dense monolayer, and the straight molecular wire structure was formed where Br atoms in each precursor were adjacent along the wire axis. The DBBAs in the monolayer were found to be hardly desorbed from the surface under subsequent heating and efficiently polymerize along with the molecular arrangement, resulting in more long and oriented GNR growth compared to the conventional growth method. The result is attributed to be suppression of random diffusion and desorption of the DBBAs on the Au surface during polymerization due to the densely-packed DBBA structure. Additionally, an investigation of the effect of the Au crystalline plane on the GNR growth revealed further anisotropic GNR growth on Au(100) compared to Au(111) due to the stronger interactions of DBBA with Au(100). These findings provide fundamental knowledge for controlling GNR growth from a well-ordered precursor monolayer to achieve more long and oriented GNRs.

Accesses

:

- Accesses

InCites™

:

Percentile:39.98

Category:Chemistry, Multidisciplinary

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.