Refine your search�ソスF     
Report No.

An X-ray and neutron scattering study of aqueous MgCl$$_2$$ solution in the gigapascal pressure range

Yamaguchi, Toshio*; Fukuyama, Nami*; Yoshida, Koji*; Katayama, Yoshinori*; Machida, Shinichi*; Hattori, Takanori   

We report the structure of an aqueous 2 mol/kg MgCl$$_2$$ solution at pressures from 0.1 MPa to 4 GPa and temperatures from 300 to 500 K revealed by X-ray and neutron scattering measurements. The scattering data are analyzed by empirical potential structure refinement (EPSR) modeling to derive the pair distribution functions, coordination number distributions, angle distributions, and spatial density functions as a function of pressure and temperature. Mg$$^{2+}$$ forms rigid solvation shells extended to the third shell; the first solvation shell of six-fold octahedral coordination with about six water molecules at 0 GPa transforms into about five water molecules and one Cl$$^-$$ due to the formation of the contact ion pairs in the GPa pressure range. The Cl$$^-$$ solvation shows a substantial pressure dependence; the coordination number of a water oxygen atom around Cl$$^-$$ increases from 8 at 0.1 MPa/300 K to 10 at 4 GPa/500 K. The solvent water transforms the tetrahedral network structure at 0.1 MPa/300 K to a densely packed structure in the GPa pressure range; the number of water oxygen atoms around a central water molecule gradually increases from 4.6 at 0.1 MPa/298 K to 8.4 at 4 GPa/500 K.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.