Refine your search�ソスF     
Report No.
 - 

Borehole calibration of ESR thermochronometry

King, G. E.*; Wen, X.*; Bartz, M.*; Bossin, L.*; Tsukamoto, Sumiko*; Li, Y.*; Herman, F.*; Ogata, Manabu ; Sueoka, Shigeru   

Whereas the luminescence thermochronometry system is limited to areas experiencing very rapid rock cooling (exhumation) of 10s of mm/yr, our data indicate that ESR thermochronometry can resolve rates of $$<$$1 mm/yr over Quaternary timescales. To determine a rock cooling history using ESR thermochronometry, signal accumulation and signal thermal loss must be robustly determined within the laboratory. We have collected a series of borehole samples with known isothermal histories to investigate the potential of this technique. Our objective is to use the latter rocks to confirm the validity of our laboratory measurements and data-fitting/numerical models by using the ESR-thermochronometry method to recover their known in-situ temperatures. Specifically, we have investigated known-thermal history samples from the MIZ1 borehole (Japan) and the KTB borehole (Germany). Preliminary data reveal that the ESR dose response and thermal decay of different quartz samples is highly variable. Whereas the Al-centre of some samples exhibits linear dose response to laboratory irradiation up to 15 kGy, the Al-centre of other samples exhibits exponential, or double-exponential growth and saturates at doses of 3-4 kGy. The Ti-centre of most samples is well described by a single saturating exponential function, however samples from the MIZ1 borehole exhibit pronounced sublinearity in the low-dose response region. Furthermore, whereas for some samples the Al-centre is less thermally stable than the Ti-centre, for other samples the inverse is observed. These observations suggest that a uniform measurement protocol and data-fitting approach may not be appropriate for quartz ESR data.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.