Refine your search:     
Report No.
 - 

Bayesian statistical model for cladding high-temperature burst under loss-of-coolant accident conditions

Tasaki, Yudai ; Narukawa, Takafumi ; Udagawa, Yutaka  

This study developed a probabilistic determination model with respect to cladding high-temperature burst conditions based on the Bayesian statistical method to reasonably evaluate fuel behaviors under loss-of-coolant accident conditions, including fuel fragmentation, relocation, and dispersal. The candidate models were based on the widely accepted empirical model established based on nonirradiated fuel cladding data. Explanatory variables were added to improve the applicability of these models with respect to irradiated materials and generalization performance. The posterior predictive distribution of each candidate model was evaluated using Bayesian estimation comprising 238 sets of high-temperature burst test data. The generalization performance was evaluated using information criteria. The results of model evaluation showed improved predictive performance by considering the effect of hydrogen content. A comparison with burnup as an alternative explanatory variable confirmed that hydrogen content was the better parameter and other burnup-associated effects, such as irradiation hardening of the metal matrix and oxide growth (reduction of the metal matrix), were less dominant under burst conditions.

Accesses

:

- Accesses

InCites™

:

Percentile:0.00

Category:Nuclear Science & Technology

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.