-MoO whiskers in Mo/Tc radioisotope production and Mo/Tc extraction using hot atoms
Ngo, M. C.*; Fujita, Yoshitaka ; Suzuki, Tatsuya*; Do, T. M. D.*; Seki, Misaki ; Nakayama, Tadachika*; Niihara, Koichi*; Suematsu, Hisayuki*
Technetium-99m (Tc) is one of the most important radioisotopes for diagnostic radio-imaging applications. Tc is a daughter product of the Mo isotope. There are two methods used to produce Mo/Tc: the nuclear fission (n,f) and the neutron capture (n,) methods. Between them, the (n,f) method is the main route, used for approximately 90% of the world's production. However, the (n,f) method faces numerous problems, including the use of highly enriched uranium, the release of highly radioactive waste, and nonproliferation problems. Therefore, the (n,) method is being developed as a future replacement for the (n,f) method. In this work, -MoO whiskers prepared by the thermal evaporation method and -MoO particles were irradiated in a nuclear reactor to produce Mo/Tc via neutron capture. The irradiated targets were dispersed into water to extract the Mo/Tc. As a result, -MoO whisker yielded higher Mo extraction rate than that from -MoO. In addition, by comparing the dissolved Mo concentrations in water, we clarified a prominent hot-atom of -MoO whiskers. This research is the first demonstration of -MoO being used as an irradiation target in the neutron capture method. On the basis of the results, -MoO is considered a promising irradiation target for producing Mo/Tc by neutron capture and using water for the radioisotope extraction process in the future.