Refine your search:     
Report No.
 - 

Estimation of continuous distribution of iterated fission probability using an artificial neural network with Monte Carlo-based training data

Tuya, D.  ; Nagaya, Yasunobu  

The Monte Carlo method is used to accurately estimate various quantities such as k-eigenvalue and integral neutron flux. However, when a distribution of a quantity is desired, the Monte Carlo method does not typically provide continuous distribution. Recently, the functional expansion tally and kernel density estimation methods have been developed to provide continuous distribution. In this paper, we propose a method to estimate a continuous distribution of a quantity using artificial neural network (ANN) model with Monte Carlo-based training data. As a proof of concept, a continuous distribution of iterated fission probability (IFP) is estimated by ANN models in two systems. The IFP distributions by the ANN models were compared with the Monte Carlo-based data and the adjoint angular neutron fluxes by the PARTISN code. The comparisons showed varying degrees of agreement or discrepancy; however, it was observed that the ANN models learned the general trend of the IFP distributions.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.