Refine your search:     
Report No.
 - 

Characterization of mineral insulated cables at the WWR-K reactor; First results

Shaimerdenov, A.*; Gizatulin, Sh.*; Sairanbayev, D.*; Bugybay, Zh.*; Silnyagin, P.*; Akhanov, A.*; Fuyushima, Takumi ; Hirota, Noriaki   ; Tsuchiya, Kunihiko 

Compared to conditions in other types of installations, cable insulation in nuclear reactors is exposed to mixed conditions (high temperatures, radiation, pressure, humidity, aggressive environments) and at the same time they must maintain their performance characteristics for a long time (about 40-50 years). As a result of irradiation to such conditions, the electrical properties of the cable insulation are degraded, which leads to an increase in current loss. This is because the charge is induced by radiation into the insulator. At the WWR-K reactor, studies were started on the radiation resistance of signal cables with two types of mineral insulation (MgO and Al$$_{2}$$O$$_{3}$$). As part of these studies, new experimental data will be obtained on the behavior of signal cables with mineral insulation of two types in mixed operating conditions (radiation field and high temperature). It is planned to accumulate fluence of fast neutrons $$sim$$ 10$$^{20}$$cm$$^{-2}$$ in cables. The irradiation temperature will be (500 $$pm$$ 50)$$^{circ}$$C). The study of the degradation of the electrical properties of the insulation of signal cables will be carried out in real time (in-situ). For this, a special design of the experimental device and a technique for in-reactor measurement of electrical characteristics were developed. This paper presents a sketch of the capsule design, the results of complex calculations for the development of the capsule design, the expected neutron fluences, the dpa in steel, the technique for in-reactor measurement of electrical characteristics, and a work plan for the future indicating the expected results. The cable irradiation time until the target neutron fluence is reached will be about 100 effective days. This research is funded by the International Scientific-Technical Center.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.