Refine your search:     
Report No.
 - 

Two-dimensional quantum universality in the spin-1/2 triangular-lattice quantum antiferromagnet Na$$_{2}$$BaCo(PO$$_{4}$$)$$_{2}$$

Sheng, J.*; Wang, L.*; Candini, A.*; Jiang, W.*; Huang, L.*; Xi, B.*; Zhao, J.*; Ge, H.*; Zhao, N.*; Fu, Y.*; Ren, J.*; Yang, J.*; Miao, P.*; Tong, X.*; Yu, D.*; Wang, S.*; Liu, Q.*; Kofu, Maiko   ; Mole, R.*; Biasiol, G.*; Yu, D.*; Zaliznyak, I. A.*; Mei, J.-W.*; Wu, L.*

Although considerable progress has been made in the theoretical understanding of the low-dimensional frustrated quantum magnets, experimental realizations of a well-established scaling analysis are still scarce. This is particularly true for the two-dimensional antiferromagnetic triangular lattices. Owing to the small exchange strength, the newly discovered compound Na$$_{2}$$BaCo(PO$$_{4}$$)$$_{2}$$ provides a rare opportunity for clarifying the quantum criticality in an ideal triangular lattice with quantum spin S=1/2. In addition to the establishment of the complete phase diagrams, the spin Hamiltonian with a negligible interplane interaction has been determined through the spin wave dispersion in the polarized state, which is consistent with the observation of a two-dimensional quantum critical point with the Bose-Einstein condensation of diluted free bosons.

Accesses

:

- Accesses

InCites™

:

Percentile:28

Category:Multidisciplinary Sciences

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.