Refine your search:     
Report No.
 - 

Critical heat flux for downward flows in vertical round pipes

Hirose, Yoshiyasu  ; Shibamoto, Yasuteru ; Hibiki, Takashi*

This study reviewed the literature that measured critical heat flux (CHF) for downward flow in round pipes and arranged the proposed correlations. Each correlation shows relatively good prediction accuracy for experimental data from their literature, but the accuracies sometimes decrease for experimental data from other literature. No correlation accurately predicts all the experimental data of the literature, indicating an issue in extrapolating existing correlations. Therefore, we developed a correlation that can accurately predict the experimental data of the collected literature. First, we used a neural network to select the essential dimensionless quantities that comprise the correlation. Then, we regarded the prediction accuracy when all candidate dimensionless quantities extracted from the literature were used for the input variables of the network as the achievable limit prediction accuracy and searched for the minimum combination of dimensionless quantities required to achieve it. The results showed that only the dimensionless mass flux and the ratio of the heating length to the channel diameter are the essential parameters to achieve it. We developed a correlation equation using these two dimensionless quantities and achieved 17.6% of the average prediction accuracy. This result considerably improved existing correlation equations with 25%-40% average prediction accuracy for the same experimental data.

Accesses

:

- Accesses

InCites™

:

Percentile:0.01

Category:Nuclear Science & Technology

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.