Refine your search:     
Report No.
 - 

Extraction of $$^{99}$$Mo hot atoms made by a neutron capture method from $$alpha$$-MoO$$_{3}$$ to water

Quach, N. M.*; Ngo, M. C.*; Yang, Y.*; Nguyen, T. B.*; Nguyen, V. T.*; Fujita, Yoshitaka   ; Do, T. M. D.*; Nakayama, Tadachika*; Suzuki, Tatsuya*; Suematsu, Hisayuki*

Technetium-99m ($$^{99m}$$Tc) is the most widely used medical radioisotope in the world and is produced from molybdenum-99 ($$^{99}$$Mo). Production of $$^{99}$$Mo via the neutron capture method draws attention as an alternative to fission-derived $$^{99}$$Mo due to non-proliferation issues, but the specific radioactivity of $$^{99}$$Mo is extremely low. In this work, a porous $$alpha$$-MoO$$_{3}$$ wire was prepared as an irradiation target in order to improve the specific activity by extracting $$^{99}$$Mo. Porous $$alpha$$-MoO$$_{3}$$ wire is synthesized from Mo metal wire by a two-step heating procedure. The hot atom effect of $$^{99}$$Mo was confirmed by activity and isotope measurements of the porous $$alpha$$-MoO$$_{3}$$ wire after neutron irradiation and the water used for extraction. In term of the extraction effectiveness, the effectiveness of $$^{99}$$Mo extraction in the porous $$alpha$$-MoO$$_{3}$$ wire was comparable to that of commercial $$alpha$$-MoO$$_{3}$$ powder.

Accesses

:

- Accesses

InCites™

:

Percentile:65.72

Category:Chemistry, Analytical

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.