Refine your search:     
Report No.
 - 

Development of nanosized graphene material for neutron intensity enhancement below cold neutron energy

Teshigawara, Makoto   ; Ikeda, Yujiro*; Muramatsu, Kazuo*; Sutani, Koichi*; Fukuzumi, Masafumi*; Noda, Yohei*; Koizumi, Satoshi*; Saruta, Koichi   ; Otake, Yoshie*

Slow neutrons, such as cold neutrons, are important non-destructive probes not only for basic physics but also for the structural genomics advancements in the life sciences and the battery technology advancements needed for the transition to a hydrogen society. Neutron-based science is also known as high-neutron-intensity-dependent science. A new unique method focusing on nanosized particle aggregation has been proposed to increase neutron intensity in that energy region. The method is based on intensity enhancement by multiple coherent scatterings with nanosized particle aggregation. The aggregation of nanosized particles matches the wavelength of below cold neutrons, causing a similar effect to coherent scattering, so-called Bragg scattering, leading to neutron intensity enhancement by several orders of magnitude. Nanodiamonds and magnesium hydride have recently been studied numerically and experimentally. The major challenge with nanodiamonds in practical applications is the molding method. Another carbon structure, graphene is focused on to find a solution to this problem. It is hypothesized that nanosized graphene could aid coherent neutron scattering under particle size conditions similar to nanodiamonds. We report the potential of nanosized graphene as a reflector material below cold neutrons, together with experimental results.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.