Refine your search:     
Report No.
 - 

Application of Monte Carlo solver Solomon to critical mass calculation of fuel randomization system

Watanabe, Tomoaki  ; Ueki, Taro  ; Suyama, Kenya

Solomon, a Monte Carlo solver being developed by JAEA, can calculate criticality in multi-material randomized systems for criticality evaluation of fuel debris. This study investigates the applicability of Solomon to critical mass calculations of fuel debris. We performed critical mass calculations of fuel randomization systems using Solomon. The fuel randomization systems, where burned fuels with different burnups and water are randomly distributed, were modeled by the incomplete randomized Weierstrass function (IRWF) model or voxel geometry in Solomon. Critical mass calculations of simple homogeneous and heterogeneous systems were also performed, and the critical sizes were compared to fuel randomization systems. The results showed that the fuel randomization causes significant variations in the critical mass. The obtained critical sizes were distributed close to a normal distribution, which made it reasonable to estimate the uncertainty of critical mass as the standard deviation. The critical sizes with uncertainty obtained by Solomon were smaller than those of a simple heterogeneous system. This indicates Solomon would be useful for estimating or evaluating a reasonable safety margin in criticality safety evaluations of fuel debris.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.