A Preliminary uncertainty analysis of PWR depletion numerical test problem on OECD/NEA/NSC LWR-UAM benchmark phase II based on JENDL-5
Fujita, Tatsuya
The uncertainty analysis of PWR depletion test problem on the OECD/NEA/NSC LWR-UAM benchmark Phase II based on JENDL-5 was performed as a preliminary investigation. The random sampling was used to quantify the uncertainty of k-infinity and nuclide inventories, the cross section (XS), the fission product yield (FPY), the decay constant, and the decay branch ratio were randomly perturbed, and several times of SERPENT 2.2.1 calculations were performed. XSs in the ACE file were perturbed by the ACE file perturbation tool using FRENDY with the 56-group covariance matrix generated by NJOY2016.72. The perturbation quantity of independent FPY was evaluated using the FPY covariance matrix prepared in JENDL-5, and the perturbed cumulative FPY was reconstructed based on the relationship between the independent and cumulative FPYs. The decay constant was independently perturbed for each nuclide. To perturb the decay branch ratios, the covariance matrix was generated by applying the generalized least square method and randomly perturbed based on this covariance matrix in the same manner as the independent FPY. In general, the influence due to decay data was an order of magnitude smaller than the influences due to XS and FPY uncertainties. For the uncertainty of k-infinity and transuranic nuclide inventories, the influence due to XS uncertainty was dominant, and that due to FPY and decay data uncertainties was one or a few orders of magnitude smaller. On the other hand, for the uncertainty of FP nuclide inventories, the influence due to FPY uncertainty was almost the same or larger than that due to XS uncertainty. It was also confirmed that the influence due to either XS or FPY uncertainty became different for each FP nuclide. In future studies, the influence due to XS uncertainty on FP nuclides will be discussed because it was not prepared in JENDL-5 and not considered in the present paper.