Refine your search:     
Report No.
 - 

Geology and geomorphology of the Jan 1st 2024 Mw 7.6 Noto Peninsula Earthquake; Observations and context

Malatesta, L.*; Sueoka, Shigeru   ; Kataoka, Kyoko S.*; Komatsu, Tetsuya  ; Tsukamoto, Sumiko*; Bruhat, L.*; Olive, J.-A.*

On January 1st 2024, a Mw 7.6 earthquake shook the Noto Peninsula on the Sea of Japan coast of Central Japan. A large number of landslides and rockfalls dissected the road network. Liquefaction damaged infrastructure up to 150 km away from the epicenter. Meter-scale coseismic uplift modified the northern shoreline with displacement of the coastline by up to 200 m seaward discernible on SAR and aerial image data. At the time of abstract submission, we only have limited preliminary observations. It appears that the Noto Earthquake ruptured the same or adjacent fault to the May 5 2023 Mw 6.5 earthquake and was in the vicinity of the March 25 2007 Mw 6.9 Noto earthquake. Coseismic displacement measured geodetically shows uplift of up to +3-4 m (SAR) in the northwest of the peninsula, and +1.06 m (GPS) in the main town of Wajima-shi. The uplift magnitude decreases gradually to the SE. The uplift is near zero (SAR) or -0.3 m (GPS) on Noto Island 30 km to the south of the town of Wajima. Surface deformation goes back to near zero (GPS) a further 20 km to the south. The coseismic deformation pattern broadly reflects the deformation recorded in the Noto landscape. Long-term moderate rock uplift in the north gives way to a complex history of long-term slow uplift around Noto Island that likely includes sustained episodes of subsidence, highlighted by its sinuous "drowned" coastline. Along the western shore, marine terraces presumed to be 120 ka (last Interglacial) show a gradient in elevation also decreasing to the south. In the north, the newly emerged platform does not have a higher marine terrace counterpart. This may reflect the relationship between high wave power and moderate rock uplift resulting in the long-term retreat of the coastline and erosion of any terrace. The Noto Peninsula also holds widespread evidence of drainage reorganization that would reflect varying boundary conditions, in particular rock uplift, in deeper time beyond 100s ka.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.