Refine your search:     
Report No.
 - 

Development of the buckling evaluation method for large scale vessels in fast reactors made of grade 91 steel and austenitic stainless steel with large initial imperfections

Okafuji, Takashi*; Miura, Kazuhiro*; Sago, Hiromi*; Murakami, Hisatomo*; Watakabe, Tomoyoshi; Ando, Masanori ; Miyazaki, Masashi

We have developed the buckling strength equations of vessels for fast reactors with seismic isolation system. The applicability of the buckling equations was confirmed by a series of buckling tests and analyses under monotonic or cyclic axial compressive load accompanied with constant horizontal load in the previous reports. In this report, we proposed a correction factor to reduce the buckling strength calculated by the buckling equations for large initial imperfections. A series of elastic-plastic buckling analyses considering large displacement and large strain theories was conducted to Grade 91 steel and austenitic stainless steel vessels which has a wide range of dimensions, initial imperfection amplitude, and vertical/horizontal load ratio. The simulation results showed that the correction factor generally shows a reduction tendency of buckling strength corresponding to initial imperfection amplitude, and the modified buckling equations are applicable to the vessels in fast reactors even for large initial imperfection amplitude which exceeds half the wall thickness.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.