Refine your search:     
Report No.
 - 

Investigation of the electronic structure of the Mg$$_{99.2}$$Zn$$_{0.2}$$Y$$_{0.6}$$ alloy using X-ray photoelectron spectroscopy

Miyazaki, Hidetoshi*; Akatsuka, Tatsuyoshi*; Kimura, Koji*; Egusa, Daisuke*; Sato, Yohei*; Itakura, Mitsuhiro  ; Takagi, Yasumasa*; Yasui, Akira*; Ozawa, Kenichi*; Mase, Kazuhiko*; Tokunaga, Toko*; Hayashi, Koichi*; Hagihara, Koji*; Abe, Eiji*

We investigated the electronic structure of the Mg$$_{99.2}$$Zn$$_{0.2}$$Y$$_{0.6}$$ alloy using hard and soft X-ray photoemission spectroscopy and electronic band structure calculations to understand the mechanism of the phase stability of this material. Electronic structure of the Mg$$_{99.2}$$Zn$$_{0.2}$$Y$$_{0.6}$$ alloy showed a semi-metallic electronic structure with a pseudo-gap at the Fermi level. The observed electronic structure of the Mg$$_{99.2}$$Zn$$_{0.2}$$Y$$_{0.6}$$ alloy suggests that the presence of a pseudogap structure is responsible for phase stability.

Accesses

:

- Accesses

InCites™

:

Percentile:54.26

Category:Materials Science, Multidisciplinary

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.